extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×C14)⋊1C22 = D28⋊16D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):1C2^2 | 448,570 |
(D4×C14)⋊2C22 = D28⋊5D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 4 | (D4xC14):2C2^2 | 448,611 |
(D4×C14)⋊3C22 = D28⋊D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):3C2^2 | 448,690 |
(D4×C14)⋊4C22 = D28⋊18D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14):4C2^2 | 448,732 |
(D4×C14)⋊5C22 = D7×C22≀C2 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | | (D4xC14):5C2^2 | 448,1041 |
(D4×C14)⋊6C22 = C24⋊2D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):6C2^2 | 448,1042 |
(D4×C14)⋊7C22 = C24⋊3D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):7C2^2 | 448,1043 |
(D4×C14)⋊8C22 = C24.33D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):8C2^2 | 448,1044 |
(D4×C14)⋊9C22 = C24.34D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):9C2^2 | 448,1045 |
(D4×C14)⋊10C22 = D7×C4⋊D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):10C2^2 | 448,1057 |
(D4×C14)⋊11C22 = C4⋊C4⋊21D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):11C2^2 | 448,1059 |
(D4×C14)⋊12C22 = C14.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):12C2^2 | 448,1060 |
(D4×C14)⋊13C22 = D28⋊19D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):13C2^2 | 448,1062 |
(D4×C14)⋊14C22 = D28⋊20D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):14C2^2 | 448,1065 |
(D4×C14)⋊15C22 = C14.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):15C2^2 | 448,1066 |
(D4×C14)⋊16C22 = C14.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):16C2^2 | 448,1073 |
(D4×C14)⋊17C22 = D7×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):17C2^2 | 448,1167 |
(D4×C14)⋊18C22 = C2×D7×D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):18C2^2 | 448,1207 |
(D4×C14)⋊19C22 = C2×D8⋊D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):19C2^2 | 448,1208 |
(D4×C14)⋊20C22 = D8⋊13D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):20C2^2 | 448,1210 |
(D4×C14)⋊21C22 = D7×C8⋊C22 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14):21C2^2 | 448,1225 |
(D4×C14)⋊22C22 = SD16⋊D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14):22C2^2 | 448,1226 |
(D4×C14)⋊23C22 = D8⋊5D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8+ | (D4xC14):23C2^2 | 448,1227 |
(D4×C14)⋊24C22 = D28.32C23 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8+ | (D4xC14):24C2^2 | 448,1288 |
(D4×C14)⋊25C22 = D7×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14):25C2^2 | 448,1379 |
(D4×C14)⋊26C22 = D14.C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14):26C2^2 | 448,1380 |
(D4×C14)⋊27C22 = C7×C22⋊D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):27C2^2 | 448,855 |
(D4×C14)⋊28C22 = C7×D4⋊4D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 4 | (D4xC14):28C2^2 | 448,861 |
(D4×C14)⋊29C22 = C14.372+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):29C2^2 | 448,1058 |
(D4×C14)⋊30C22 = C14.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):30C2^2 | 448,1063 |
(D4×C14)⋊31C22 = C14.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):31C2^2 | 448,1070 |
(D4×C14)⋊32C22 = C42⋊26D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):32C2^2 | 448,1168 |
(D4×C14)⋊33C22 = D28⋊11D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):33C2^2 | 448,1170 |
(D4×C14)⋊34C22 = C42⋊28D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):34C2^2 | 448,1173 |
(D4×C14)⋊35C22 = C7×C23⋊3D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):35C2^2 | 448,1317 |
(D4×C14)⋊36C22 = C7×C22.29C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):36C2^2 | 448,1318 |
(D4×C14)⋊37C22 = C7×C22.32C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):37C2^2 | 448,1321 |
(D4×C14)⋊38C22 = C7×D4⋊5D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):38C2^2 | 448,1329 |
(D4×C14)⋊39C22 = C7×C22.54C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14):39C2^2 | 448,1343 |
(D4×C14)⋊40C22 = C7×D4○D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):40C2^2 | 448,1359 |
(D4×C14)⋊41C22 = C22×D4⋊D7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):41C2^2 | 448,1245 |
(D4×C14)⋊42C22 = C2×D4.D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):42C2^2 | 448,1246 |
(D4×C14)⋊43C22 = C2×C28⋊2D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):43C2^2 | 448,1253 |
(D4×C14)⋊44C22 = C2×C28⋊D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):44C2^2 | 448,1256 |
(D4×C14)⋊45C22 = C2×D4⋊D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):45C2^2 | 448,1273 |
(D4×C14)⋊46C22 = C28.C24 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):46C2^2 | 448,1275 |
(D4×C14)⋊47C22 = (C2×C28)⋊15D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):47C2^2 | 448,1281 |
(D4×C14)⋊48C22 = C14.1462+ 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):48C2^2 | 448,1283 |
(D4×C14)⋊49C22 = C22×D4×D7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):49C2^2 | 448,1369 |
(D4×C14)⋊50C22 = C22×D4⋊2D7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):50C2^2 | 448,1370 |
(D4×C14)⋊51C22 = C2×D4⋊6D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):51C2^2 | 448,1371 |
(D4×C14)⋊52C22 = C2×D7×C4○D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):52C2^2 | 448,1375 |
(D4×C14)⋊53C22 = C2×D4⋊8D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):53C2^2 | 448,1376 |
(D4×C14)⋊54C22 = C14.C25 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):54C2^2 | 448,1378 |
(D4×C14)⋊55C22 = C2×C23⋊D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):55C2^2 | 448,1252 |
(D4×C14)⋊56C22 = D4×C7⋊D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):56C2^2 | 448,1254 |
(D4×C14)⋊57C22 = C2×Dic7⋊D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):57C2^2 | 448,1255 |
(D4×C14)⋊58C22 = C24⋊7D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):58C2^2 | 448,1257 |
(D4×C14)⋊59C22 = C14.1452+ 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):59C2^2 | 448,1282 |
(D4×C14)⋊60C22 = C14×C22≀C2 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):60C2^2 | 448,1304 |
(D4×C14)⋊61C22 = C14×C4⋊D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):61C2^2 | 448,1305 |
(D4×C14)⋊62C22 = C7×C22.19C24 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):62C2^2 | 448,1308 |
(D4×C14)⋊63C22 = C14×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):63C2^2 | 448,1313 |
(D4×C14)⋊64C22 = C7×D42 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):64C2^2 | 448,1328 |
(D4×C14)⋊65C22 = D8×C2×C14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):65C2^2 | 448,1352 |
(D4×C14)⋊66C22 = C14×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):66C2^2 | 448,1356 |
(D4×C14)⋊67C22 = C7×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):67C2^2 | 448,1358 |
(D4×C14)⋊68C22 = C14×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):68C2^2 | 448,1389 |
(D4×C14)⋊69C22 = C7×C2.C25 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):69C2^2 | 448,1391 |
(D4×C14)⋊70C22 = C4○D4×C2×C14 | φ: trivial image | 224 | | (D4xC14):70C2^2 | 448,1388 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×C14).1C22 = C7⋊C2≀C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).1C2^2 | 448,28 |
(D4×C14).2C22 = (C2×C28).D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).2C2^2 | 448,29 |
(D4×C14).3C22 = C23.D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).3C2^2 | 448,30 |
(D4×C14).4C22 = C23.2D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).4C2^2 | 448,31 |
(D4×C14).5C22 = C24⋊Dic7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 4 | (D4xC14).5C2^2 | 448,93 |
(D4×C14).6C22 = (C22×C28)⋊C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).6C2^2 | 448,96 |
(D4×C14).7C22 = C23⋊C4⋊5D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).7C2^2 | 448,274 |
(D4×C14).8C22 = C23⋊D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).8C2^2 | 448,275 |
(D4×C14).9C22 = C23.5D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).9C2^2 | 448,276 |
(D4×C14).10C22 = D7×C23⋊C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).10C2^2 | 448,277 |
(D4×C14).11C22 = D7×C4.D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).11C2^2 | 448,278 |
(D4×C14).12C22 = M4(2).19D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).12C2^2 | 448,279 |
(D4×C14).13C22 = D28.1D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).13C2^2 | 448,280 |
(D4×C14).14C22 = D28⋊1D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).14C2^2 | 448,281 |
(D4×C14).15C22 = D28.2D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).15C2^2 | 448,282 |
(D4×C14).16C22 = D28.3D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8+ | (D4xC14).16C2^2 | 448,283 |
(D4×C14).17C22 = Dic7⋊4D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).17C2^2 | 448,290 |
(D4×C14).18C22 = D4.D7⋊C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).18C2^2 | 448,291 |
(D4×C14).19C22 = Dic7⋊6SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).19C2^2 | 448,292 |
(D4×C14).20C22 = Dic7.D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).20C2^2 | 448,293 |
(D4×C14).21C22 = Dic7.SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).21C2^2 | 448,294 |
(D4×C14).22C22 = D4⋊Dic14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).22C2^2 | 448,295 |
(D4×C14).23C22 = Dic14⋊2D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).23C2^2 | 448,296 |
(D4×C14).24C22 = D4.Dic14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).24C2^2 | 448,297 |
(D4×C14).25C22 = C4⋊C4.D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).25C2^2 | 448,298 |
(D4×C14).26C22 = C28⋊Q8⋊C2 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).26C2^2 | 448,299 |
(D4×C14).27C22 = D4.2Dic14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).27C2^2 | 448,300 |
(D4×C14).28C22 = Dic14.D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).28C2^2 | 448,301 |
(D4×C14).29C22 = (C8×Dic7)⋊C2 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).29C2^2 | 448,302 |
(D4×C14).30C22 = D7×D4⋊C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).30C2^2 | 448,303 |
(D4×C14).31C22 = (D4×D7)⋊C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).31C2^2 | 448,304 |
(D4×C14).32C22 = D4⋊(C4×D7) | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).32C2^2 | 448,305 |
(D4×C14).33C22 = D4⋊2D7⋊C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).33C2^2 | 448,306 |
(D4×C14).34C22 = D4⋊D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).34C2^2 | 448,307 |
(D4×C14).35C22 = D14.D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).35C2^2 | 448,308 |
(D4×C14).36C22 = D14⋊D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).36C2^2 | 448,309 |
(D4×C14).37C22 = D4.6D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).37C2^2 | 448,310 |
(D4×C14).38C22 = D14.SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).38C2^2 | 448,311 |
(D4×C14).39C22 = D14⋊SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).39C2^2 | 448,312 |
(D4×C14).40C22 = C8⋊Dic7⋊C2 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).40C2^2 | 448,313 |
(D4×C14).41C22 = C7⋊C8⋊1D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).41C2^2 | 448,314 |
(D4×C14).42C22 = D4⋊3D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).42C2^2 | 448,315 |
(D4×C14).43C22 = C7⋊C8⋊D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).43C2^2 | 448,316 |
(D4×C14).44C22 = D4.D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).44C2^2 | 448,317 |
(D4×C14).45C22 = C56⋊1C4⋊C2 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).45C2^2 | 448,318 |
(D4×C14).46C22 = D4⋊D7⋊C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).46C2^2 | 448,319 |
(D4×C14).47C22 = D28⋊3D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).47C2^2 | 448,320 |
(D4×C14).48C22 = D28.D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).48C2^2 | 448,321 |
(D4×C14).49C22 = C24⋊D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 4 | (D4xC14).49C2^2 | 448,566 |
(D4×C14).50C22 = (C2×C14).D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).50C2^2 | 448,567 |
(D4×C14).51C22 = C4⋊D4.D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).51C2^2 | 448,568 |
(D4×C14).52C22 = (C2×D4).D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).52C2^2 | 448,569 |
(D4×C14).53C22 = D28⋊17D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).53C2^2 | 448,571 |
(D4×C14).54C22 = C7⋊C8⋊22D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).54C2^2 | 448,572 |
(D4×C14).55C22 = C4⋊D4⋊D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).55C2^2 | 448,573 |
(D4×C14).56C22 = Dic14⋊17D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).56C2^2 | 448,574 |
(D4×C14).57C22 = C7⋊C8⋊23D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).57C2^2 | 448,575 |
(D4×C14).58C22 = C7⋊C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).58C2^2 | 448,576 |
(D4×C14).59C22 = C22⋊C4⋊D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).59C2^2 | 448,587 |
(D4×C14).60C22 = C42.61D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).60C2^2 | 448,588 |
(D4×C14).61C22 = C42.62D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).61C2^2 | 448,589 |
(D4×C14).62C22 = C42.213D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).62C2^2 | 448,590 |
(D4×C14).63C22 = D28.23D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).63C2^2 | 448,591 |
(D4×C14).64C22 = C42.64D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).64C2^2 | 448,592 |
(D4×C14).65C22 = C42.214D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).65C2^2 | 448,593 |
(D4×C14).66C22 = C42.65D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).66C2^2 | 448,594 |
(D4×C14).67C22 = C42⋊5D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).67C2^2 | 448,595 |
(D4×C14).68C22 = D28.14D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).68C2^2 | 448,596 |
(D4×C14).69C22 = C28.16D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).69C2^2 | 448,604 |
(D4×C14).70C22 = C42.72D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).70C2^2 | 448,605 |
(D4×C14).71C22 = C28⋊2D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).71C2^2 | 448,606 |
(D4×C14).72C22 = C28⋊D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).72C2^2 | 448,607 |
(D4×C14).73C22 = C42.74D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).73C2^2 | 448,608 |
(D4×C14).74C22 = Dic14⋊9D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).74C2^2 | 448,609 |
(D4×C14).75C22 = C28⋊4SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).75C2^2 | 448,610 |
(D4×C14).76C22 = D8×Dic7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).76C2^2 | 448,683 |
(D4×C14).77C22 = Dic7⋊D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).77C2^2 | 448,684 |
(D4×C14).78C22 = C56⋊5D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).78C2^2 | 448,685 |
(D4×C14).79C22 = D8⋊Dic7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).79C2^2 | 448,686 |
(D4×C14).80C22 = (C2×D8).D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).80C2^2 | 448,687 |
(D4×C14).81C22 = C56⋊11D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).81C2^2 | 448,688 |
(D4×C14).82C22 = C56.22D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).82C2^2 | 448,689 |
(D4×C14).83C22 = C56⋊6D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).83C2^2 | 448,691 |
(D4×C14).84C22 = Dic14⋊D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).84C2^2 | 448,692 |
(D4×C14).85C22 = C56⋊12D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).85C2^2 | 448,693 |
(D4×C14).86C22 = C56.23D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).86C2^2 | 448,694 |
(D4×C14).87C22 = SD16×Dic7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).87C2^2 | 448,695 |
(D4×C14).88C22 = Dic7⋊3SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).88C2^2 | 448,696 |
(D4×C14).89C22 = Dic7⋊5SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).89C2^2 | 448,697 |
(D4×C14).90C22 = SD16⋊Dic7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).90C2^2 | 448,698 |
(D4×C14).91C22 = (C7×D4).D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).91C2^2 | 448,699 |
(D4×C14).92C22 = (C7×Q8).D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).92C2^2 | 448,700 |
(D4×C14).93C22 = C56.31D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).93C2^2 | 448,701 |
(D4×C14).94C22 = C56.43D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).94C2^2 | 448,702 |
(D4×C14).95C22 = D14⋊6SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).95C2^2 | 448,703 |
(D4×C14).96C22 = Dic14⋊7D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).96C2^2 | 448,704 |
(D4×C14).97C22 = C56⋊14D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).97C2^2 | 448,705 |
(D4×C14).98C22 = D28⋊7D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).98C2^2 | 448,706 |
(D4×C14).99C22 = Dic14.16D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).99C2^2 | 448,707 |
(D4×C14).100C22 = C56⋊8D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).100C2^2 | 448,708 |
(D4×C14).101C22 = C56⋊15D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).101C2^2 | 448,709 |
(D4×C14).102C22 = C56⋊9D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).102C2^2 | 448,710 |
(D4×C14).103C22 = C56.44D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).103C2^2 | 448,711 |
(D4×C14).104C22 = M4(2).D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8+ | (D4xC14).104C2^2 | 448,733 |
(D4×C14).105C22 = M4(2).13D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).105C2^2 | 448,734 |
(D4×C14).106C22 = D28.38D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).106C2^2 | 448,735 |
(D4×C14).107C22 = 2+ 1+4⋊D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).107C2^2 | 448,775 |
(D4×C14).108C22 = 2+ 1+4.D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).108C2^2 | 448,776 |
(D4×C14).109C22 = C24.56D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).109C2^2 | 448,1039 |
(D4×C14).110C22 = C24.32D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).110C2^2 | 448,1040 |
(D4×C14).111C22 = C24.35D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).111C2^2 | 448,1046 |
(D4×C14).112C22 = C24⋊4D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).112C2^2 | 448,1047 |
(D4×C14).113C22 = C24.36D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).113C2^2 | 448,1048 |
(D4×C14).114C22 = C28⋊(C4○D4) | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).114C2^2 | 448,1049 |
(D4×C14).115C22 = C14.682- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).115C2^2 | 448,1050 |
(D4×C14).116C22 = Dic14⋊19D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).116C2^2 | 448,1051 |
(D4×C14).117C22 = Dic14⋊20D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).117C2^2 | 448,1052 |
(D4×C14).118C22 = C4⋊C4.178D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).118C2^2 | 448,1053 |
(D4×C14).119C22 = C14.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).119C2^2 | 448,1054 |
(D4×C14).120C22 = C14.352+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).120C2^2 | 448,1055 |
(D4×C14).121C22 = C14.712- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).121C2^2 | 448,1056 |
(D4×C14).122C22 = C14.722- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).122C2^2 | 448,1061 |
(D4×C14).123C22 = C14.732- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).123C2^2 | 448,1064 |
(D4×C14).124C22 = C14.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).124C2^2 | 448,1067 |
(D4×C14).125C22 = C14.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).125C2^2 | 448,1068 |
(D4×C14).126C22 = C14.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).126C2^2 | 448,1069 |
(D4×C14).127C22 = C14.1152+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).127C2^2 | 448,1071 |
(D4×C14).128C22 = C14.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).128C2^2 | 448,1072 |
(D4×C14).129C22 = C14.492+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).129C2^2 | 448,1074 |
(D4×C14).130C22 = C14.792- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).130C2^2 | 448,1101 |
(D4×C14).131C22 = C4⋊C4.197D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).131C2^2 | 448,1102 |
(D4×C14).132C22 = C14.802- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).132C2^2 | 448,1103 |
(D4×C14).133C22 = C14.602+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).133C2^2 | 448,1104 |
(D4×C14).134C22 = D7×C22.D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).134C2^2 | 448,1105 |
(D4×C14).135C22 = C14.1202+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).135C2^2 | 448,1106 |
(D4×C14).136C22 = C14.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).136C2^2 | 448,1107 |
(D4×C14).137C22 = C14.822- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).137C2^2 | 448,1108 |
(D4×C14).138C22 = C4⋊C4⋊28D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).138C2^2 | 448,1109 |
(D4×C14).139C22 = C14.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).139C2^2 | 448,1110 |
(D4×C14).140C22 = C14.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).140C2^2 | 448,1111 |
(D4×C14).141C22 = C14.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).141C2^2 | 448,1112 |
(D4×C14).142C22 = C14.832- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).142C2^2 | 448,1113 |
(D4×C14).143C22 = C14.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).143C2^2 | 448,1114 |
(D4×C14).144C22 = C14.842- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).144C2^2 | 448,1115 |
(D4×C14).145C22 = C14.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).145C2^2 | 448,1116 |
(D4×C14).146C22 = C14.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).146C2^2 | 448,1117 |
(D4×C14).147C22 = C14.852- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).147C2^2 | 448,1118 |
(D4×C14).148C22 = C14.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).148C2^2 | 448,1119 |
(D4×C14).149C22 = C14.862- 1+4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).149C2^2 | 448,1120 |
(D4×C14).150C22 = C42.233D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).150C2^2 | 448,1121 |
(D4×C14).151C22 = C42.139D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).151C2^2 | 448,1124 |
(D4×C14).152C22 = D7×C4.4D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).152C2^2 | 448,1126 |
(D4×C14).153C22 = C42⋊18D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).153C2^2 | 448,1127 |
(D4×C14).154C22 = C42.141D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).154C2^2 | 448,1128 |
(D4×C14).155C22 = D28⋊10D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).155C2^2 | 448,1129 |
(D4×C14).156C22 = Dic14⋊10D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).156C2^2 | 448,1130 |
(D4×C14).157C22 = C42.234D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).157C2^2 | 448,1133 |
(D4×C14).158C22 = C42.143D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).158C2^2 | 448,1134 |
(D4×C14).159C22 = C42.144D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).159C2^2 | 448,1135 |
(D4×C14).160C22 = C42.166D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).160C2^2 | 448,1166 |
(D4×C14).161C22 = C42.238D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).161C2^2 | 448,1169 |
(D4×C14).162C22 = C2×D8⋊3D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).162C2^2 | 448,1209 |
(D4×C14).163C22 = C2×D7×SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).163C2^2 | 448,1211 |
(D4×C14).164C22 = C2×D56⋊C2 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).164C2^2 | 448,1212 |
(D4×C14).165C22 = C2×SD16⋊D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).165C2^2 | 448,1213 |
(D4×C14).166C22 = C2×SD16⋊3D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).166C2^2 | 448,1214 |
(D4×C14).167C22 = D28.29D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).167C2^2 | 448,1215 |
(D4×C14).168C22 = D8⋊6D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).168C2^2 | 448,1228 |
(D4×C14).169C22 = D28.33C23 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).169C2^2 | 448,1289 |
(D4×C14).170C22 = C23.3D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).170C2^2 | 448,32 |
(D4×C14).171C22 = C23.4D28 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).171C2^2 | 448,33 |
(D4×C14).172C22 = C42⋊2Dic7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).172C2^2 | 448,98 |
(D4×C14).173C22 = C42⋊3Dic7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 4 | (D4xC14).173C2^2 | 448,102 |
(D4×C14).174C22 = C7×C2≀C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 4 | (D4xC14).174C2^2 | 448,155 |
(D4×C14).175C22 = C7×C23.D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).175C2^2 | 448,156 |
(D4×C14).176C22 = C7×C42⋊C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 4 | (D4xC14).176C2^2 | 448,157 |
(D4×C14).177C22 = C7×C42⋊3C4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).177C2^2 | 448,158 |
(D4×C14).178C22 = 2+ 1+4.2D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 8- | (D4xC14).178C2^2 | 448,777 |
(D4×C14).179C22 = 2+ 1+4⋊2D7 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 8+ | (D4xC14).179C2^2 | 448,778 |
(D4×C14).180C22 = C7×Q8⋊D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).180C2^2 | 448,856 |
(D4×C14).181C22 = C7×D4.8D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).181C2^2 | 448,862 |
(D4×C14).182C22 = C7×D4.9D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).182C2^2 | 448,863 |
(D4×C14).183C22 = C7×C2≀C22 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 56 | 4 | (D4xC14).183C2^2 | 448,865 |
(D4×C14).184C22 = C7×C23.7D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).184C2^2 | 448,866 |
(D4×C14).185C22 = C7×C4⋊D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).185C2^2 | 448,867 |
(D4×C14).186C22 = C7×C4⋊SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).186C2^2 | 448,868 |
(D4×C14).187C22 = C7×D4.2D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).187C2^2 | 448,871 |
(D4×C14).188C22 = C7×Q8.D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).188C2^2 | 448,872 |
(D4×C14).189C22 = C7×C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).189C2^2 | 448,873 |
(D4×C14).190C22 = C7×C8⋊7D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).190C2^2 | 448,874 |
(D4×C14).191C22 = C7×C8⋊D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).191C2^2 | 448,876 |
(D4×C14).192C22 = C7×C8⋊2D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).192C2^2 | 448,877 |
(D4×C14).193C22 = C7×D4.3D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).193C2^2 | 448,879 |
(D4×C14).194C22 = C7×D4.4D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).194C2^2 | 448,880 |
(D4×C14).195C22 = C7×C22.D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).195C2^2 | 448,888 |
(D4×C14).196C22 = C7×C23.46D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).196C2^2 | 448,889 |
(D4×C14).197C22 = C7×C23.19D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).197C2^2 | 448,890 |
(D4×C14).198C22 = C7×C4.4D8 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).198C2^2 | 448,894 |
(D4×C14).199C22 = C7×C42.78C22 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).199C2^2 | 448,896 |
(D4×C14).200C22 = C7×C42.28C22 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).200C2^2 | 448,897 |
(D4×C14).201C22 = C7×C42.29C22 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).201C2^2 | 448,898 |
(D4×C14).202C22 = C7×C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).202C2^2 | 448,900 |
(D4×C14).203C22 = C7×C8⋊4D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).203C2^2 | 448,901 |
(D4×C14).204C22 = C7×C8.12D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).204C2^2 | 448,903 |
(D4×C14).205C22 = C7×C8⋊3D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).205C2^2 | 448,904 |
(D4×C14).206C22 = C7×C8.2D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).206C2^2 | 448,905 |
(D4×C14).207C22 = C42.137D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).207C2^2 | 448,1122 |
(D4×C14).208C22 = C42.138D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).208C2^2 | 448,1123 |
(D4×C14).209C22 = C42.140D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).209C2^2 | 448,1125 |
(D4×C14).210C22 = C42⋊20D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).210C2^2 | 448,1131 |
(D4×C14).211C22 = C42⋊21D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).211C2^2 | 448,1132 |
(D4×C14).212C22 = C42⋊22D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).212C2^2 | 448,1136 |
(D4×C14).213C22 = C42.145D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).213C2^2 | 448,1137 |
(D4×C14).214C22 = Dic14⋊11D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).214C2^2 | 448,1171 |
(D4×C14).215C22 = C42.168D14 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).215C2^2 | 448,1172 |
(D4×C14).216C22 = C7×C22.31C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).216C2^2 | 448,1320 |
(D4×C14).217C22 = C7×C22.33C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).217C2^2 | 448,1322 |
(D4×C14).218C22 = C7×C22.34C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).218C2^2 | 448,1323 |
(D4×C14).219C22 = C7×C22.36C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).219C2^2 | 448,1325 |
(D4×C14).220C22 = C7×Q8⋊6D4 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).220C2^2 | 448,1333 |
(D4×C14).221C22 = C7×C22.47C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).221C2^2 | 448,1336 |
(D4×C14).222C22 = C7×C22.49C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).222C2^2 | 448,1338 |
(D4×C14).223C22 = C7×C24⋊C22 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | | (D4xC14).223C2^2 | 448,1344 |
(D4×C14).224C22 = C7×C22.56C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).224C2^2 | 448,1345 |
(D4×C14).225C22 = C7×C22.57C24 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 224 | | (D4xC14).225C2^2 | 448,1346 |
(D4×C14).226C22 = C7×D4○SD16 | φ: C22/C1 → C22 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).226C2^2 | 448,1360 |
(D4×C14).227C22 = C28.50D8 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).227C2^2 | 448,541 |
(D4×C14).228C22 = C28.38SD16 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).228C2^2 | 448,542 |
(D4×C14).229C22 = D4.3Dic14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).229C2^2 | 448,543 |
(D4×C14).230C22 = C4×D4⋊D7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).230C2^2 | 448,547 |
(D4×C14).231C22 = C42.48D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).231C2^2 | 448,548 |
(D4×C14).232C22 = C28⋊7D8 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).232C2^2 | 448,549 |
(D4×C14).233C22 = D4.1D28 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).233C2^2 | 448,550 |
(D4×C14).234C22 = C4×D4.D7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).234C2^2 | 448,551 |
(D4×C14).235C22 = C42.51D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).235C2^2 | 448,552 |
(D4×C14).236C22 = D4.2D28 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).236C2^2 | 448,553 |
(D4×C14).237C22 = C2×D4⋊Dic7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).237C2^2 | 448,748 |
(D4×C14).238C22 = (D4×C14)⋊6C4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).238C2^2 | 448,749 |
(D4×C14).239C22 = C2×C28.D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).239C2^2 | 448,750 |
(D4×C14).240C22 = (C2×C14)⋊8D8 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).240C2^2 | 448,751 |
(D4×C14).241C22 = (C7×D4).31D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).241C2^2 | 448,752 |
(D4×C14).242C22 = C4○D4⋊Dic7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).242C2^2 | 448,766 |
(D4×C14).243C22 = C28.(C2×D4) | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).243C2^2 | 448,767 |
(D4×C14).244C22 = (D4×C14).16C4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).244C2^2 | 448,771 |
(D4×C14).245C22 = (C7×D4)⋊14D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).245C2^2 | 448,772 |
(D4×C14).246C22 = (C7×D4).32D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).246C2^2 | 448,773 |
(D4×C14).247C22 = C4×D4⋊2D7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).247C2^2 | 448,989 |
(D4×C14).248C22 = D4×Dic14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).248C2^2 | 448,990 |
(D4×C14).249C22 = D4⋊5Dic14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).249C2^2 | 448,992 |
(D4×C14).250C22 = C42.106D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).250C2^2 | 448,995 |
(D4×C14).251C22 = D4⋊6Dic14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).251C2^2 | 448,996 |
(D4×C14).252C22 = C4×D4×D7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).252C2^2 | 448,997 |
(D4×C14).253C22 = C42⋊11D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).253C2^2 | 448,998 |
(D4×C14).254C22 = C42.108D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).254C2^2 | 448,999 |
(D4×C14).255C22 = C42.228D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).255C2^2 | 448,1001 |
(D4×C14).256C22 = D4×D28 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).256C2^2 | 448,1002 |
(D4×C14).257C22 = D28⋊24D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).257C2^2 | 448,1004 |
(D4×C14).258C22 = Dic14⋊24D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).258C2^2 | 448,1006 |
(D4×C14).259C22 = D4⋊5D28 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).259C2^2 | 448,1007 |
(D4×C14).260C22 = D4⋊6D28 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).260C2^2 | 448,1008 |
(D4×C14).261C22 = C42.229D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).261C2^2 | 448,1010 |
(D4×C14).262C22 = C42.113D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).262C2^2 | 448,1011 |
(D4×C14).263C22 = C42.114D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).263C2^2 | 448,1012 |
(D4×C14).264C22 = C42.115D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).264C2^2 | 448,1014 |
(D4×C14).265C22 = C42.116D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).265C2^2 | 448,1015 |
(D4×C14).266C22 = C42.117D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).266C2^2 | 448,1016 |
(D4×C14).267C22 = C22×D4.D7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).267C2^2 | 448,1247 |
(D4×C14).268C22 = C2×D4×Dic7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).268C2^2 | 448,1248 |
(D4×C14).269C22 = C2×C28.17D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).269C2^2 | 448,1250 |
(D4×C14).270C22 = C24.38D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).270C2^2 | 448,1251 |
(D4×C14).271C22 = C24.41D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).271C2^2 | 448,1258 |
(D4×C14).272C22 = C2×D4.8D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).272C2^2 | 448,1274 |
(D4×C14).273C22 = C2×D4.9D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).273C2^2 | 448,1276 |
(D4×C14).274C22 = C4○D4×Dic7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).274C2^2 | 448,1279 |
(D4×C14).275C22 = C14.1062- 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).275C2^2 | 448,1280 |
(D4×C14).276C22 = C14.1072- 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).276C2^2 | 448,1284 |
(D4×C14).277C22 = (C2×C28)⋊17D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).277C2^2 | 448,1285 |
(D4×C14).278C22 = C14.1482+ 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).278C2^2 | 448,1287 |
(D4×C14).279C22 = C2×D4.10D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).279C2^2 | 448,1377 |
(D4×C14).280C22 = C2×C23⋊Dic7 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).280C2^2 | 448,753 |
(D4×C14).281C22 = (D4×C14)⋊10C4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).281C2^2 | 448,774 |
(D4×C14).282C22 = C14×C23⋊C4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).282C2^2 | 448,817 |
(D4×C14).283C22 = C7×C23.C23 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).283C2^2 | 448,818 |
(D4×C14).284C22 = C14×C4.D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).284C2^2 | 448,819 |
(D4×C14).285C22 = C7×M4(2).8C22 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).285C2^2 | 448,821 |
(D4×C14).286C22 = C14×D4⋊C4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).286C2^2 | 448,822 |
(D4×C14).287C22 = C7×C23.24D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).287C2^2 | 448,824 |
(D4×C14).288C22 = C7×C23.36D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).288C2^2 | 448,825 |
(D4×C14).289C22 = C7×C23.37D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).289C2^2 | 448,826 |
(D4×C14).290C22 = D8×C28 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).290C2^2 | 448,845 |
(D4×C14).291C22 = SD16×C28 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).291C2^2 | 448,846 |
(D4×C14).292C22 = C7×SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).292C2^2 | 448,848 |
(D4×C14).293C22 = C7×D8⋊C4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).293C2^2 | 448,850 |
(D4×C14).294C22 = C7×D4⋊D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).294C2^2 | 448,857 |
(D4×C14).295C22 = C7×C22⋊SD16 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).295C2^2 | 448,858 |
(D4×C14).296C22 = C7×D4.7D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).296C2^2 | 448,860 |
(D4×C14).297C22 = C7×D4.D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).297C2^2 | 448,869 |
(D4×C14).298C22 = C7×D4⋊Q8 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).298C2^2 | 448,882 |
(D4×C14).299C22 = C7×D4⋊2Q8 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).299C2^2 | 448,884 |
(D4×C14).300C22 = C7×D4.Q8 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).300C2^2 | 448,886 |
(D4×C14).301C22 = C42.102D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).301C2^2 | 448,991 |
(D4×C14).302C22 = C42.104D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).302C2^2 | 448,993 |
(D4×C14).303C22 = C42.105D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).303C2^2 | 448,994 |
(D4×C14).304C22 = C42⋊12D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).304C2^2 | 448,1000 |
(D4×C14).305C22 = D28⋊23D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).305C2^2 | 448,1003 |
(D4×C14).306C22 = Dic14⋊23D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).306C2^2 | 448,1005 |
(D4×C14).307C22 = C42⋊16D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).307C2^2 | 448,1009 |
(D4×C14).308C22 = C42⋊17D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).308C2^2 | 448,1013 |
(D4×C14).309C22 = C42.118D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).309C2^2 | 448,1017 |
(D4×C14).310C22 = C42.119D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).310C2^2 | 448,1018 |
(D4×C14).311C22 = C2×C23.18D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).311C2^2 | 448,1249 |
(D4×C14).312C22 = C24.42D14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).312C2^2 | 448,1259 |
(D4×C14).313C22 = C14.1042- 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).313C2^2 | 448,1277 |
(D4×C14).314C22 = C14.1052- 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).314C2^2 | 448,1278 |
(D4×C14).315C22 = C14.1082- 1+4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).315C2^2 | 448,1286 |
(D4×C14).316C22 = C14×C22.D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).316C2^2 | 448,1307 |
(D4×C14).317C22 = C14×C4.4D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).317C2^2 | 448,1309 |
(D4×C14).318C22 = C7×C23.36C23 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).318C2^2 | 448,1312 |
(D4×C14).319C22 = C7×C22.26C24 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).319C2^2 | 448,1315 |
(D4×C14).320C22 = C7×C23.38C23 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).320C2^2 | 448,1319 |
(D4×C14).321C22 = C7×D4⋊6D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).321C2^2 | 448,1330 |
(D4×C14).322C22 = C7×Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).322C2^2 | 448,1331 |
(D4×C14).323C22 = C7×C22.45C24 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).323C2^2 | 448,1334 |
(D4×C14).324C22 = C7×C22.46C24 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).324C2^2 | 448,1335 |
(D4×C14).325C22 = C7×C22.50C24 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).325C2^2 | 448,1339 |
(D4×C14).326C22 = C7×C22.53C24 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).326C2^2 | 448,1342 |
(D4×C14).327C22 = SD16×C2×C14 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).327C2^2 | 448,1353 |
(D4×C14).328C22 = C14×C4○D8 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).328C2^2 | 448,1355 |
(D4×C14).329C22 = C14×C8.C22 | φ: C22/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).329C2^2 | 448,1357 |
(D4×C14).330C22 = D4×C2×C28 | φ: trivial image | 224 | | (D4xC14).330C2^2 | 448,1298 |
(D4×C14).331C22 = C4○D4×C28 | φ: trivial image | 224 | | (D4xC14).331C2^2 | 448,1300 |
(D4×C14).332C22 = C7×C22.11C24 | φ: trivial image | 112 | | (D4xC14).332C2^2 | 448,1301 |
(D4×C14).333C22 = C7×C23.33C23 | φ: trivial image | 224 | | (D4xC14).333C2^2 | 448,1303 |
(D4×C14).334C22 = C7×D4×Q8 | φ: trivial image | 224 | | (D4xC14).334C2^2 | 448,1332 |
(D4×C14).335C22 = C7×D4⋊3Q8 | φ: trivial image | 224 | | (D4xC14).335C2^2 | 448,1337 |
(D4×C14).336C22 = C14×2- 1+4 | φ: trivial image | 224 | | (D4xC14).336C2^2 | 448,1390 |